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Summary

The pseudo-screen propagator is a kind of one-way

wave propagator based on the local Born approxima-

tion. The propagator becomes unreliable when the ve-

locity perturbation is large. We develop an extended

pseudo-screen propagator by introducing di�erent ref-

erence velocities in di�erent regions of a medium to

ensure the condition of small perturbation. Explod-

ing reector data for a 2D slice of the SEG/EAEG 3D

salt model is generated by a �nite-di�erence scheme to

test the feasibility of the method. The migration re-

sult demonstrates that the method can handle severe

lateral velocity variations and provides high quality

images of complex structures.

Introduction

The split-step Fourier (or phase-screen) propagator

has been used for poststack migration (Sto�a et

al., 1990), prestack migration (e.g. Huang and Wu,

1996b), and modeling forward and reected wave

propagation (Wu and Huang, 1992; Wu et al., 1995).

The pseudo-screen propagator is an alternative one-

way wave propagator based on the local Born approx-

imation. Wu and Huang (1995) used it for modeling

primary reected waves and Huang and Wu (1996a)

applied it to prestack depth migration. Both propa-

gators are based on the assumption of small perturba-

tion. The advantage of the split-step Fourier method is

that it is unconditionally stable but the pseudo-screen

method is more accurate than the split-step Fourier

method. For large velocity perturbations, it is di�cult

to calculate scattered �elds using the pseudo-screen

method.

Kessinger (1992) introduced the multiple reference

slowness logic of the PSPI migration (Gazdag and

Sguazzero, 1984) into the split-step Fourier migration

in order to handle large lateral velocity variations. By

analogy, we introduce multiple reference velocities in

the pseudo-screen method. Di�erent reference veloci-

ties are chosen in di�erent regions of a medium so that

the velocity perturbations are small. The increased

computational time of the extended method relative

to the original method depends on the number of ref-

erence velocities selected. For example, if the average

number of reference velocities per depth level is 4, then

the CPU time for the proposed method would be ap-

proximately 3 times more than the original method.

As in the extended split-step Fourier migration, no

interpolation is needed in the proposed method. It

can be used to image complex structures with large

lateral velocity variations. We use a 2D slice of the

SEG/EAEG 3D salt model (Amoco, 1995) to test the

method and compare the result with those of the origi-

nal and extended split-step Fourier migrations, Kirch-

ho� migration, and FX-migration. We show that the

quality of the image obtained using the new method is

similar to to that from the extended split-step Fourier

migration but is better than the other methods. The

method take about 20-30% more CPU time than the

extended split-step Fourier migration with multiple

reference velocities but it provides more accurate re-

sults for steep dip interfaces than the latter method.

Comparison of the split-step Fourier and

pseudo-screen propagators

The split-step Fourier propagator (cf. Sto�a et al.,

1990; Huang and Wu, 1996b) is given by
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where p(x; y; z;!) is the pressure, ! is the circular

frequency, �z is the vertical extrapolation interval,

v(x; y; z) is the velocity of the medium, and v0(z) is

the reference velocity that is chosen as a function of

depth. The operators F and F�1 represent respec-

tively the forward and inverse Fourier transforms over

x and y. The vertical component of wavenumber k0z
is given by

k0z =
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where kx and ky are respectively the x- and y-

component of wavenumber.

In the pseudo-screen method (cf. Wu and Huang,

1995; Huang and Wu, 1996a), the scattered wave �eld

ps(x; y; z +�z;!) is calculated by
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where z is the modi�ed vertical component of

wavenumber given by

z =
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Figure 1: Comparison of relative errors of traveltime for

the split-step Fourier (solid line) and pseudo-screen (dashed

line) propagators.
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Figure 2: 2D slice of the SEG/EAEG 3D salt model (a)

together with its ideal reectivity (b).

In equation (4), a small real number � is introduced to

avoid the numerical singularity when k0z approaches

zero (de Hoop and Wu, 1996). The wave�eld extrapo-

lation equation for the pseudo-screen method is there-

fore given by

p(x; y; z +�z;!) = F�1
�
e
i k0z�zF fp(x; y; z;!)g

	
+ps(x; y; z +�z;!) : (5)

To compare the accuracy between the split-step
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Figure 3: Exploding reector data generated by a �nite-

di�erence scheme for the model shown in Figure 2.

Fourier and pseudo-screen propagators, a 2D homoge-

neous medium de�ned on a grid 1024�100 was used.

The grid spacings along horizontal and vertical direc-

tions are both 10m. The velocity of the medium is

4000m/s and a reference velocity of 3636.36m/s was

selected. Hence, the whole medium has a relative

velocity perturbation 10%. A point source with a

Ricker's time history and a dominant frequency 20Hz

was introduced at grid site (512,1). Seismograms were

recorded at all grid sites from (512,512) to (512,882).

The corresponding propagation angles relative to the

main propagation direction z-axis range from 0 to 75

degrees. The split-step Fourier and pseudo-screen cal-

culations were respectively made for 512 time steps

with a time sample interval 0.004 seconds. The fre-

quency range for both cases is 0.5{60 Hz. Traveltimes

picked from the recorded seismograms were compared

with those of seismograms calculated by an analyt-

ical solution. The relative errors of traveltime are

shown in Figure 1 where the solid line is the result of

the split-step Fourier propagator and the dashed line

the pseudo-screen propagator. This plot demonstrates

that the pseudo-screen propagator is about 5% more

accurate than the split-step Fourier propagator when

the propagation angle lies between 60{75 degrees.

Extended pseudo-screen propagator with mul-

tiple reference velocities

Di�erent reference velocities are selected in the di�er-

ent regions at each depth level so that velocity per-

turbations in these regions are small enough for the

pseudo-screen propagator (for instance 10%). There-

fore, equation (3) becomes
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Figure 4: (a) Split-step Fourier migration image. (b)

Extended split-step Fourier migration image.

0

1000

2000

3000

De
pt

h 
(m

)

0 0.2 0.4 0.6 0.8 1.0 1.2
x10 4Horizontal Distance (m)

(a)

0

1000

2000

3000

De
pt

h 
(m

)

0 0.2 0.4 0.6 0.8 1.0 1.2
x10 4Horizontal Distance (m)

(b)

Figure 5: (a) Pseudo-screen migration image. (b) Ex-

tended pseudo-screen migration image.
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whereM(x; y; z) is the mapping function between spa-

tial position and reference velocity, and j is the index
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Figure 6: (a) Kirchho� migration image using �rst-arrival

traveltime calculated by a �nite-di�erence scheme (From

Fei et al., 1996). (b) FX-migration image (Amoco, 1995).

of reference velocities at each depth level. Equation (6)

can also be written as
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Equation (8) can be calculated as soon as reference

velocities have been selected, and, therefore, it is more

e�cient to calculate scattered �elds using equation (7)

than equation (6). The �rst term in the right hand side

of equation (5) can be written as

p0(x; y; z +�z;!) =
X
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In equation (7) and (9), the inner Fourier transforms

are made only once at each depth level. To reduce alias

during migration, a Butterworth �lter is applied in the



Extended pseudo-screen migration 4

wavenumber domain and a Hann (or raised cosine)

taper is used near the lateral boundaries a model.

For migration, the exponential terms and (i !2) in

all above equations must be changed to their complex

conjugates.

Examples

Figure 2(a) is a 2D slice of the SEG/EAEG 3D salt

model provided by Amoco (1995) and Figure 2(b) is

its ideal reectivity. For migration, both grid spacings

along horizontal and vertical directions are 12.192m.

A �nite-di�erence scheme was used to generate the ex-

ploding reector data (Figure 3) for the 2D salt model.

The dominant frequency of the Ricker's time history

is 20Hz. The frequency range used in all the follow-

ing migrations are 5{60Hz. Figure 4 shows migration

images by the original and extended split-step Fourier

migrations. For the original split-step Fourier migra-

tion, the average velocity at each depth level was used

as the only reference velocity for that level. The ex-

tended split-step Fourier migration with multiple ref-

erence velocities gave an image (Figure 4(b) ) much

better than the original split-step Fourier method

(Figure 4(a) ), particularly in the regions A and B

(cf. Figure 2(b) ) where the structures are complex and

the lateral velocity variations are large. The pseudo-

screen migration image is shown in Figure 5(a) and

we can see that there are a lot of artifacts due to

the di�culty in the calculations of scattered �elds for

large velocity contrasts between the salt body and the

surrounding media. Figure 5(b) is the migration im-

age from the extended pseudo-screen migration with

multiple reference velocities, which clearly images the

lower part of the salt body interface, the regions A and

B (cf. Figure 2(b) ), and provides much better images

of the interfaces below the salt body than the original

pseudo-screen migration. The quality of the image in

Figure 5(b) is similar to Figure 4(b) in general. The

di�erences are the details of the images.

For comparison, the corresponding images cut from

3D migration images by the Kirchho� migration (Fei

et al., 1996) and FX-migration (Amoco, 1995) are

given in Figure 6(a) and (b), respectively. Compar-

ing Figure 4(b) and Figure 5(b) with Figure 6(a) and

(b), we can see that both multiple reference velocity

migrations yield much better images than the Kirch-

ho� migration, and give clearer images than the FX-

migration in the region B (cf. Figure 2(b) ).

Conclusions

We have developed an extended pseudo-screen migra-

tion with multiple reference velocities. Di�erent ref-

erence velocities are selected in di�erent regions of a

medium so that velocity perturbations are small. No

artifacts associated with multiple reference velocities

were observed if a Butterworth �lter is applied in the

wavenumber domain. The method can be used to

image complex structures with severe lateral veloc-

ity variations. Computation time increases relative to

the original method but could be signi�cantly reduced

if an inverse Fourier transform algorithm calculating

only the desired part of the output is available.
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